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Online System for Faster Multipoint Linkage Analysis via Parallel Execution
on Thousands of Personal Computers
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Computation of LOD scores is a valuable tool for mapping disease-susceptibility genes in the study of Mendelian
and complex diseases. However, computation of exact multipoint likelihoods of large inbred pedigrees with extensive
missing data is often beyond the capabilities of a single computer. We present a distributed system called “SU-
PERLINK-ONLINE,” for the computation of multipoint LOD scores of large inbred pedigrees. It achieves high
performance via the efficient parallelization of the algorithms in SUPERLINK, a state-of-the-art serial program for
these tasks, and through the use of the idle cycles of thousands of personal computers. The main algorithmic
challenge has been to efficiently split a large task for distributed execution in a highly dynamic, nondedicated
running environment. Notably, the system is available online, which allows computationally intensive analyses to
be performed with no need for either the installation of software or the maintenance of a complicated distributed
environment. As the system was being developed, it was extensively tested by collaborating medical centers world-
wide on a variety of real data sets, some of which are presented in this article.
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Computation of LOD is a valuable tool for mapping
disease-susceptibility genes in the study of Mendelian
and complex diseases. Computation of the LOD score—
defined as , where is the likelihoodlog (L /L ) L10 HA H0 H0

under the null hypothesis of no linkage between markers
and a disease locus and is the likelihood of linkage—LHA

requires efficient methods, especially for large pedigrees
and many markers. A linkage analysis is performed by
placing a trait locus at various positions along a map of
markers, to locate regions that show evidence of linkage
and that merit further study. To extract full linkage in-
formation from pedigree data, it is desirable to perform
multipoint likelihood computations with the joint use of
all available relevant data.

There are two main approaches for computing mul-
tipoint likelihoods: the Elston-Stewart1 and the Lander-
Green2 algorithms. The complexity of the Elston-Stewart
algorithm is linear in the number of individuals but ex-
ponential in the number of markers. On the other hand,
the complexity of the Lander-Green algorithm increases
linearly in the number of markers but exponentially in
the number of individuals in the pedigree. A recently
proposed approach is to combine and generalize the pre-
vious two methods by using the framework of Bayesian
networks as the internal representation of linkage anal-
ysis problems.3 Using this representation enables the ef-
ficient handling of a wide variety of likelihood com-
putations by automatic choice of computation order,
according to the problem at hand.

The computation of exact multipoint likelihoods of

large inbred pedigrees with extensive missing data is of-
ten beyond the computational capabilities of a single
computer. Two complementary approaches can facilitate
more-demanding linkage computations: designing more-
efficient algorithms and parallelizing computation to use
multiple computers. Both approaches have been pursued
over the years. Several algorithmic improvements of ex-
act likelihood computations have been reported.3–10 For
example, efficient implementation of the Lander-Green
algorithm by the GENEHUNTER program allows mul-
tipoint analysis of medium-sized pedigrees with large
numbers of markers7,11; VITESSE v.2 implements opti-
mization for the Elston-Stewart algorithm, extending its
computational boundaries by orders of magnitude5,9;
and SUPERLINK applies enhanced optimization tech-
niques for finding better orders of computation in Bayes-
ian networks, making it possible to perform multipoint
analysis of larger inbred families.3,12,13 Several parallel
algorithms for linkage analysis have been reported.14–21

Parallel computing was successfully applied to improve
the performance of LINKAGE and FASTLINK pack-
ages, speeding up the computations with the use of a set
of dedicated processors.14,15,17–19 Efficient parallel imple-
mentations of GENEHUNTER, which involve dividing
the computations over high-performance processors,
achieve significant speedups compared with the serial
version and allow for the analysis of larger pedigrees.20

Despite the advantages of parallel computations, the
use of parallel programs for linkage analysis is quite
limited by their dependency on the availability of high-
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performance execution environments, such as a cluster
of high-performance, dedicated machines or a super-
computer. Such hardware can usually be found only in
specialized research centers because of its high cost and
operational complexity.

In this article, we introduce a distributed system for
exact linkage analysis called “SUPERLINK-ONLINE,”
which is capable of analyzing inbred families of several
hundreds of individuals with extended missing data,
thereby outperforming all existing tools for exact link-
age computations on such inputs. The system is based
on the parallelization of SUPERLINK, which is a state-
of-the-art program for parametric linkage analysis of
dichotomous/binary traits with large inbred pedi-
grees. Our approach, made possible by recent advances
in distributed computing,22 eliminates the need for ex-
pensive hardware by distributing the computations over
thousands of nondedicated personal computers, using
their idle cycles. The main algorithmic challenge has
been to efficiently split a large linkage analysis task for
execution in a dynamic, distributed running environ-
ment. Such environments are characterized by the pres-
ence of many computers with different capabilities and
operating systems, frequent failures, and extreme fluc-
tuations of the number of computers available for
execution.

SUPERLINK-ONLINE delivers the newest informa-
tion technology to geneticists via a simple Internet in-
terface that completely hides the complexity of the un-
derlying distributed system. The system allows for the
concurrent submission of linkage tasks by multiple users,
dynamically adapting the parallelization strategy in ac-
cordance with the current load and the number of com-
puters available to perform the computations. As the
system was being developed, it was extensively tested by
collaborating medical centers worldwide on a variety of
real data sets, some of which are presented in this article.
Our results show improved running times of 12 orders
of magnitude versus the serial version of the program.
This allows users to avoid the undesirable breakup of
larger pedigrees into smaller pieces, which often weakens
the linkage signal.

Background

Exact Parametric Linkage Analysis Software

Linkage analysis tests for cosegregation between al-
leles at markers in a chromosomal region and at a trait
locus of interest. In parametric linkage analysis, the like-
lihood for evidence of linkage is computed underL(v)
a given model of disease-allele frequency, penetrances,
recombination fraction between markers, and recom-
bination fraction (v) between a disease locus and a ref-
erence locus. Computations of in this article assumeL(v)

Hardy-Weinberg equilibrium, linkage equilibrium, and
no interference, which are common assumptions in most
linkage analyses performed to date. It is common to
consider asLOD(v ) p log L(v p v )/L(v p 0.5) 1 3.31 10 1

indication of linkage.23

Consider a pedigree and let denote the observationsxi

that include affection status and marker information at
one or multiple loci of the ith pedigree member. The
likelihood is the probability of the observations defined
by . Elston and Stewart haveL(v) p P(x ,x , … ,x Fv)1 2 m

shown that, for simple pedigrees without loops, the like-
lihood may be represented as the telescoping sum

L(XFv) p P(x Fg )P(g F7) …� 1 1 1
g1

P(x Fg )P(g F7)� m�1 m�1 m�1
gm�1

P(x Fg )P(g F7) ,� m m m
gm

where the individuals are ordered such that parents pre-
cede their children and where represents either theP(gF7)i

ith child’s multilocus genotype, given the parental mul-
tilocus genotypes, or the probability that a founder in-
dividual (with no parents in the pedigree) has a multi-
locus genotype .1gi

The Elston-Stewart algorithm and its extensions have
been employed in many linkage analysis programs.
Whereas the early implementations (i.e., LIPED24 and
LINKAGE25,26) allow for computation of two-point and
multipoint LOD scores of small pedigrees with the use
of few markers, their successors—such as later versions
of LINKAGE and FASTLINK4—extend their capabilities
considerably. The current serial version of FASTLINK
improves the analysis of complex pedigrees by efficient
loop-breaking algorithms.27 Further versions of FAS-
TLINK use parallel computing to achieve higher per-
formance.15,17–19 Another example of efficient optimi-
zations is VITESSE v.1, which raises the computational
boundaries of the Elston-Stewart algorithm and allows
for computation of multipoint LOD scores for several
polymorphic markers with many unknown genotypes
via “set recoding.”5

The complexity of the Elston-Stewart algorithm grows
linearly with the size of the pedigree but exponentially
with the number of markers in the analysis, since the
algorithm essentially performs summation over all pos-
sible genotype vectors. Also, in the extension for the
analysis of complex pedigrees, the loop-breaking method
grows exponentially in the number of different loop
breakers to be considered.

Exact multipoint linkage computations involving
many markers for small-to-medium–sized families was
first made practical with the introduction of the GENE-
HUNTER software,11 which uses the Lander-Green al-
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gorithm.2 Whereas, in the Elston-Stewart algorithm, the
unobserved quantity is the genotype, the Lander-Green
algorithm proposes to condition observations on inher-
itance vectors for each locus, where the inheritance vec-
tor is a binary vector indicating the parental source of
each allele for each nonfounder in the pedigree.

The Lander-Green algorithm can potentially compute
multipoint likelihoods on practically unbounded num-
bers of markers. However, the computational capabili-
ties of the algorithm are restricted to the analysis of
pedigrees of moderate size, since its computing time and
memory requirements scale exponentially in the number
of nonfounders, which is translated into the number of
inheritance vectors to be considered. Later versions of
GENEHUNTER optimized the performance by applying
the Fast Fourier Transform for matrix multiplication7

and by considering only the set of inheritance vectors
compatible with the observed genotypes.28 ALLEGRO8

and MERLIN10 present alternative implementations of
the Lander-Green algorithm that show speedups of up
to 2 orders of magnitude versus GENEHUNTER,
achieved through further reduction of the inheritance
vector space and application of software optimization
techniques. Advances in parallel computing allowed par-
allelization of GENEHUNTER for execution on clusters
of high-performance workstations, enabling faster com-
putations.20 Also, GENEHUNTER-TWOLOCUS29 has
been parallelized.21

Another approach is presented by SUPERLINK, in
which the pedigree data are represented as a Bayesian
network, allowing one to significantly improve the per-
formance by optimizing the order in which variables are
eliminated.3,12 As opposed to the Elston-Stewart and
Lander-Green algorithms, in which variables are elimi-
nated in a predetermined order, SUPERLINK finds the
order of variable elimination at run time according to
the problem at hand, enabling multipoint-likelihood
computations of large inbred families that cannot be
performed by other current linkage analysis software.

Bayesian Networks

Bayesian networks,30,31 also known as directed graph-
ical models, are a knowledge representation formalism
that offers a powerful framework to model complex
multivariate problems, such as the ones posed by genetic
analysis. A Bayesian network is defined via directed acy-
clic graphs (DAGs). A DAG is a directed graph with no
directed cycles. Each node v has a set of parents —Pav

namely, a set of vertices from which there are edges
leading into v in the DAG. A Bayesian network is a DAG,
where each vertex v corresponds to a discrete variable

with a conditional probability distributionX � Xv

, and the joint probability distri-P(X p x FPa p pa )v v v v

bution is the product of the conditional probabilityP(X)
distributions of all variables. In other words,

P(X p x , … ,X p x )1 1 n n

p P(X p x FPa p pa ) , (1)� v v v v
v

where is the joint assignment topa {X p xFX � Pa }i i iv v

the variables in . When , the respective termPa Pa p ∅v v

in equation (1) reduces to . Note that eachP(X p x )v v

missing edge represents a conditional independence as-
sertion. This is the key factor for using Bayesian net-
works to efficiently handle joint probability distributions
for large numbers of variables.

An example is shown in figure 1. This example shows
a Bayesian network for three-point analysis (two mark-
ers and one disease locus) of a nuclear family with two
typed children. The genetic loci variables of individual
i at locus j are denoted by and for maternal andm pG Gi,j i,j

paternal alleles, respectively. Variables , , andm pE S Si,j i,j i,j

denote the marker phenotypes (unordered pair of alleles)
and the maternal and the paternal selector variables,
respectively, of individual i at locus j. Variable denotesEi

the affection status of individual i. Individual 4 is af-
fected, as indicated by node . Highlighted nodes rep-E4

resent evidence variables, including available marker
phenotypes and affection status. Marker phenotypes of
the parents are unknown in this example. The quan-
tities and represent allele frequencies,m pP(G ) P(G )i,j i,j

and represent recombinationm m p pP(S FS ) P(S FS )i,j i,j�1 i,j i,j�1

probabilities, and represent penetrances.m pP(EFG ,G )i i,j i,j

The joint distribution is the product of all probability
tables. The assumptions of no interference and of Hardy-
Weinberg and linkage equilibria are encoded by edges
missing in the Bayesian network. More details are given
elsewhere.32

Bayesian networks are used in this article for com-
puting the probability of evidence, which is represented
as a joint assignment e p {X p e ,X p e , … ,X pe 1 e 2 e1 2 m

, to a subset of variables . It ise } E p {X ,X , … ,X }m e e e1 2 m

computable from the joint probability distribution table
by summing over all variables not in E—X , … ,X1 k

namely,

∗P(e) p … P (X p x FPa p pa ) , (2)� �� v v v v
vx x1 k

where is obtained from P by the assignment of the∗P
observed values to the respective variables{e ,e , … ,e }1 2 m

in . In figure 1, evidence variables such as marker phe-E
notypes and affection status are highlighted.

The straightforward approach to compute —byP(e)
first multiplying all conditional probability tables and
then computing all sums—is infeasible because of the
exponential size of the joint probability distribution. In-
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Figure 1 A Bayesian network for three-point analysis

stead, it is possible to interleave summations and mul-
tiplications, summing variables one after another at early
stages of the computation by pushing the summation
sign in equation (2) as far to the right as possible.

When summing over all values of a variable X, it
suffices to compute the product of only those probability
tables that contain X, yielding an intermediate table over
the variables of the tables being multiplied. The sum-
mation over variable X eliminates it from the product,
reducing the dimensions of the intermediate table by a
factor equal to the number of values of X. This technique
of computing equation (2) is called “variable elimina-
tion” in the Bayesian network literature.33

Variable elimination alone is often inapplicable be-
cause of the prohibitively large size of intermediate tables
generated during the computations, which exceed the
physical memory of contemporary computers. An alter-
native approach to computing equation (2) is to simplify
a given problem by first assigning values to some subset
of variables and then performing the computa-C P X
tion for every joint assignment to the variables in .c C
Assigning a value to variables in decreases the size ofC

the corresponding probability tables and, consequently,
the size of intermediate tables, reducing the original
problem and fitting it for computation via variable elim-
ination. Equation (2) can then be rewritten as

P(e) p � , (3)� c
c

where represents∗� p � � P (Y p y FPa p pa )c v v v vy�{X�C} v

the computation of the problem for specific joint as-
signment to the variables in . The variables in arec C C
called the “conditioning variables,” and this method is
called “conditioning.”30 It has been used to extend the
Elston-Stewart algorithm to looped pedigrees.34

Conditioning, as described above, is inefficient be-
cause of the repetitive evaluation of identical subex-
pressions when computing for different joint assign-�c

ments to the conditioning variables. A more efficientc
algorithm, called “constrained variable elimination,”
significantly reduces the amount of redundant compu-
tations by interleaving conditioning and elimination.
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This algorithm is the basis of the genetic linkage software
SUPERLINK.12

The constrained elimination algorithm applies vari-
able elimination until no more variables can be elimi-
nated without exceeding the specified memory con-
straints. Conditioning is then performed on the smallest
subset of variables, which suffices to reduce the size of
intermediate tables to meet the specified memory con-
straints. The steps of elimination and conditioning are
interleaved until all products and sums have been
computed.

Both time and space complexity of the constrained
variable elimination algorithm depend on the order in
which variables are conditioned or eliminated. The run-
ning time of the algorithm applied to the same problem
can range many orders of magnitude, depending on the
chosen order of computations. Finding an optimal com-
bined conditioning and elimination order that minimizes
the computation time for general graphs is computa-
tionally hard.13 In fact, the Elston-Stewart and the
Lander-Green algorithms can be viewed as instances of
the variable elimination method that uses predetermined
elimination orders—namely, the Elston-Stewart algo-
rithm eliminates one nuclear family after another,
whereas the Lander-Green algorithm eliminates one lo-
cus after another.13

SUPERLINK implements a stochastic, greedy algo-
rithm for determining the combined conditioning and
elimination order that strives to minimize the execution
time under given memory constraints.13 The next vari-
able for elimination or conditioning is selected from the
set of variables ranked highest by some choice criteria.
The specific elimination variable is selected at random
from this set. A single iteration of the algorithm com-
putes an elimination and conditioning order and its elim-
ination cost, defined as the sum of sizes of all inter-
mediate tables generated during the computation. This
procedure is invoked multiple times with the use of var-
ious choice criteria, producing a set of orders. Finally,
the order with the lowest elimination cost is chosen. The
order found is optimized for the linkage problem at
hand, automatically handling pedigrees of any topology
and size as well as missing data and multiple markers.

This algorithm, called “Find-Order,” is crucial for the
efficient parallelization developed in the “Methods” sec-
tion and is specified in appendix A.

Grid Computing

Grid computing offers a model for employing the un-
used computational resources, such as central processing
unit (CPU) cycles, of a large number of computers via
a distributed network infrastructure. As opposed to the
traditional approach of high-performance computations
via expensive, dedicated hardware, grid computing fo-

cuses on the ability to support demanding computations,
such as linkage analysis, on desktop computers and on
computers with a variety of architectures and capabilities
that are owned by different parties.

Although grid computing can provide potentially un-
bounded low-cost computation power, there are steps to
take to allow applications to realize this potential. The
simplest scenario includes finding the appropriate com-
puter(s) for executing the task, enabling the task’s re-
mote invocation by creating the execution environment
necessary to run it on the remote machine, and collecting
the results back to the originating computer after its
completion. These steps must be performed securely, re-
liably, and under various constraints. It is particularly
challenging to accomplish that in a dynamic environ-
ment in which computers can fail, can be shut down or
disconnected from the network, or can be removed from
the computation by their owners without any prior no-
tification. Finally, the grid environment is a multiuser
system that requires special measures to avoid conten-
tion over resources.

These and other issues are handled by grid middle-
ware, such as Condor,22 which is designed to hide the
complexities of using grid computing. A typical scenario
of using such middleware is to request execution of N
tasks by placing them in a queue. The system will at-
tempt to run the tasks by allocating available computers
that match the specific requirements of memory size,
operating system, etc. However, the system guarantees
neither the total amount of allocated machines nor their
uninterrupted operation. Each task is executed on a sin-
gle computer, independently of others. The number of
computers allocated for a single user depends on the
system load created by other users and on the total num-
ber of vacant computers available, and it may change
over time. Computer failures during task execution are
detected and result in an automatic attempt to find an
alternative computer for completing the interrupted
task. As long as there are incomplete tasks in the queue,
the system tries to find additional computers for running
them, to ensure that all tasks are completed.

Not all applications can benefit from execution in grid
environments, because of high network delays and un-
predictable resource failures. For example, parallel ap-
plications requiring periodic synchronization between
subtasks running on different computers are not likely
to obtain performance gains. However, grid environ-
ments with a sufficient number of computers allow for
high speedups for problems that can be parallelized into
many independent subtasks without needed synchroni-
zation, as we do for linkage analysis computations.

Methods

The main mechanisms that empower SUPERLINK-ONLINE
are parallelization of multipoint linkage analysis for grid en-
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vironments, handling of multiple linkage tasks, choice of par-
allelization strategy according to the complexity of the problem
at hand, reliable execution, and notification of progress and
completion. The working system employs thousands of com-
puters from several universities across the globe. These issues
are described below.

Parallelization of Multipoint Linkage Analysis

Multipoint LOD score computations are performed in three
phases:

1. Phase I. Each pedigree in the input is transformed to a
Bayesian network representation,32 such as the one given
in figure 1. A new Bayesian network is constructed for
every position of the disease locus.

2. Phase II. The Find-Order algorithm (see appendix A) is
applied for each Bayesian network, yielding an elimina-
tion order that strives to optimize the computations under
given memory constraints.

3. Phase III. Likelihood computations are performed via
equation (2) for each Bayesian network by elimination
of the variables according to the specified order, which
yields the likelihood of the data for a specific disease-
locus position (see appendix A).

Several levels of parallelism are readily available. First, each
Bayesian network created in phase I is processed concurrently.
This alone is insufficient for enabling LOD score computations
of large pedigrees for a given disease locus position. Thus,
parallelization is performed even in computing the LOD score
for one locus. This change yields a significant algorithmic im-
provement over serial computations.

Parallelization of phase II.—The algorithm Find-Order (see
appendix A) yields better elimination orders as more iterations
are executed. The execution time of computing an optimized
order of likelihood computations should constitute a small
fraction of the total running time and has been restricted to
5% in the serial implementation.12 Clearly, any speedup of such
a small part of the computations would have only minimal
direct impact on the overall performance. However, since the
complexity of the order found is crucial for the entire likeli-
hood computations, parallelization can be used to considerably
increase the number of iterations of Find-Order, yielding orders
of significantly lower elimination costs.

The algorithm Parallel-Find-Order, presented below, pro-
vides significant improvement that is far beyond the speedup
of the optimization phase alone. The input to the algorithm
is a Bayesian network N and a threshold T. The threshold
represents the amount of memory available for likelihood com-
putations on a single computer and currently ranges between

and bytes. Failure to fit the available memory leads8 1010 10
to performance degradation and is avoided. In grid environ-
ments with many computers of various capabilities, where it
is impossible to predict which computer will be allocated for
execution, the threshold T is determined dynamically among
the computers available for execution according to a computer
with the minimum amount, but above some predefined value,

of memory.

Parallel-Find-Order Algorithm
Input: A Bayesian network N and a threshold of T bytes.
Output: An elimination order P and its cost, .cost(P)
1. Quick complexity evaluation on one computer; takes

seconds.
a. Run Find-Order ( ) for iterations and reportN,T,L L p 5

the best elimination order .P1

b. Set to be the average run time of one iteration.T1

c. If , then output the order and the cor-cost(P ) ! C P1 1 1

responding elimination cost, , and exit.cost(P )1

d. If , then output “task too complex” and′cost(P ) 1 C1 1

exit.
2. Refined complexity evaluation on one computer; takes

minutes.
a. Set to be the number of iterations for the eliminationI1

cost, , via a conversion table for serialcost(P )1

execution.
b. Run Find-Order ( ) for iterations and re-N,T,L L p I1

port the best elimination order .P2

c. If , then output the order and the cor-cost(P ) ! C P2 2 2

responding elimination cost, , and exit.cost(P )2

d. If , then output “task too complex” and′cost(P ) 1 C2 2

exit.
3. Final complexity evaluation on several computers in par-

allel; takes minutes to hours.
a. Set k to be the value corresponding to via acost(P )2

conversion table for parallel execution.
b. Run k Find-Order ( ) tasks in parallel, each forN,T,L

iterations, using at most k computers, and re-L p I1

port the best evaluation order found.P3

c. If , then output “task too complex” and′cost(P ) 1 C3 3

exit.
d. Output the order and the corresponding evaluationP3

cost, , and exit.cost(P )3

The Parallel-Find-Order algorithm comprises three steps,
each of which refines the optimization results of the previous
step by applying more iterations of the procedure Find-Order
(see appendix A). The first step runs five iterations of the Find-
Order procedure, often yielding a far-from-optimal elimination
order, especially for high-complexity problems. However, if the
complexity of the order is below the threshold , the totalC1

running time of likelihood computation is small, and further
optimization is not needed.

For problems with higher complexity, the second step is
executed. The number of iterations is now determined using
a conversion table, which associates the complexity cost of the
elimination order found in the first step with the total expected
running time of the likelihood computations. The number of
iterations to be executed in this step is determined so as to
allocate 5% of the total expected computing time for the ex-
ecution of the optimization algorithm, with the assumption
that the average time for a single iteration is the same as that
for the execution of the first step. For complex problems, sev-
eral thousands of iterations of the Find-Order procedure are
executed in this step. When this step is completed, the elimi-
nation cost of the order found in this step is reevaluated, to
determine whether additional optimization is required. Indeed,
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if the elimination cost is below the threshold , further op-C2

timization is unlikely to yield any significant improvement in
the running time, and the optimization algorithm stops. On
the other hand, if the complexity found is above a threshold

, then the task is rejected.′C2

The third optimization step is executed in parallel on several
computers, and the total number of iterations depends both
on the problem complexity and on the number of computers
available at the moment of execution. Each computer is as-
signed to perform the same number of iterations as was per-
formed in the second step, but the total number of computers
can reach 100 for problems that are on the edge of system
capabilities. If, however, the number of available computers
drops during the execution, as is common in grid environ-
ments, the number of iterations to perform is dynamically de-
creased, so that the execution time of the parallel-ordering
phase does not dominate the total revised execution time. The
effect of the parallel ordering for large pedigrees is demon-
strated by our results, where a speedup of 2 orders of mag-
nitude is obtained solely because of this phase. Note that a
similar increase in the number of iterations in the serial version
of the algorithm leads to performance degradation, since the
speedup due to better order is outweighed by long running
times of the optimization stage.

Parallelization of phase III.—The choice of a parallelization
strategy is guided by two main requirements. First, subtasks
are not allowed to communicate or to synchronize their state
during the execution. This factor is crucial for the performance
of parallel applications in a grid environment, where com-
munication between computers is usually slow or even im-
possible because of security constraints. Second, parallel ap-
plications must tolerate frequent failures of computers during
the execution by minimizing the impact of failures on the over-
all performance. These requirements have not been considered
in previous parallelization approaches for Bayesian networks
software.35,36

Our approach is to divide a large complex task into several
smaller independent subproblems that can be processed con-
currently. As noted previously, the serial algorithm computes
the result of equation (2) by eliminating variables one by one
and by using conditioning when the intermediate results do
not fit the memory constraints. However, we can apply con-
ditioning before eliminating any variable, as shown in equation
(3). We calculate for every joint assignment to the variables�x

in concurrently on several computers and then obtain theC
final result by summation, as in equation (3). Since each sub-
problem is simpler than the initial problem by a factor of�x

up to the number of joint assignments, parallel computation
is expected to significantly reduce the running time. To further
divide the problem to take advantage of more computers, more
variables are used for conditioning.

We incorporate these ideas in the Parallel-Constrained-Elim-
ination algorithm.

Parallel-Constrained-Elimination Algorithm
Input: A Bayesian network N, an elimination order P, and
a threshold C.
Output: Likelihood of data.
1. .P R ∅
2. While ,cost(P) 1 C

a. choose a conditioning variable X from P and add it to
the set ,P

b. remove X from order P, and
c. adjust the Bayesian network N by setting in allX p x

probability tables in which X appears.
3. Obtain the total number of parallel subtasks L by mul-

tiplying the number of values of all variables in .P
4. Create L Bayesian networks and L elimination ordersNi

, one for every joint assignment of the variables in .P Pi

5. Run L Constrained-Elimination ( tasks in parallelN ,P )i i

using SUPERLINK.
6. Output the likelihood by summing all partial results.

The input to the algorithm is a Bayesian network N, elimi-
nation order P found by the Parallel-Find-Order procedure,
and a threshold C. The threshold C defines the maximum
complexity of each subtask, and it is proportional to the run-
ning time of a single subtask. The algorithm begins by selecting
conditioning variables to be used for parallelization by itera-
tively adding variables to a set . In each iteration, a newP
variable is selected from the set of all conditioning variables
in the order P, and the next unused conditioning variable is
chosen according to P. The order P and the Bayesian network
N are adjusted as follows: the selected variable is removed
from P, and the Bayesian network N is modified by setting
that variable to a specific value in all probability tables in
which it appears. Thus, every iteration further simplifies the
Bayesian network and reduces the cost of the elimination order.
The process continues as long as the elimination cost of the
modified elimination order exceeds the maximum allowed
complexity threshold C. The number of subtasks L created by
this step equals the number of joint assignments to all variables
added to . After L subtasks are created, they are executed inP
parallel with the use of the serial Constrained-Elimination pro-
cedure (see appendix A). The final result is obtained by sum-
ming the partial results of all subtasks.

The choice of the number of subtasks L and their respective
maximum size C is crucial for efficiency of the parallelization.
The inherent overheads of distributed environments, such as
scheduling and network delays, often become a dominating
factor inhibiting meaningful performance gains, suggesting
that long-running subtasks should be preferred. On the other
hand, performance degradation as a result of computer failures
will be lower for short subtasks, which suggests that the
amount of computations per subtask should be reduced. Fur-
thermore, decreasing the amount of computations per subtask
increases the number of subtasks generated for computing a
given problem, which improves load balancing and utilization
of available computers.

Our algorithm controls the subtask size by specifying the
maximum allowable complexity threshold C. Specifying lower
values of C increases the number of subtasks L, which de-
creases the subtask complexity and, consequently, its running
time. The value of C for a given problem is determined as
follows. We initially set C so that a subtask’s running time
does not exceed the average time a task can execute without
interruption on a computer in the grid environment being used.
If such value of C yields the result that the number of subtasks
is below the number of available computers, then C is itera-
tively reduced to allow division into more subtasks. The lower
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Figure 2 Pedigree reprinted from Knappskog et al.37

bound on C is set so that overheads due to scheduling and
network delays constitute !1% of the subtask’s running time.

Using conditioning for parallelization results in repetitive
evaluation of identical subexpressions by multiple computers,
thus reducing the efficiency of the parallel algorithm. The
amount of such redundant computations depends on the num-
ber of conditioning variables used for parallelization. We
found that, even for the most complex problems that are split
into thousands of subtasks, the overhead does not exceed 10%
because of the small number of conditioning variables required
for parallelization. Such an overhead is far outweighed by the
performance gains due to splitting a task into a set of inde-
pendent subtasks, completely avoiding communication and
synchronization between them, and, by that, allowing their
execution in an opportunistic grid environment.

Multiuser Online System for Linkage Analysis

The SUPERLINK-ONLINE system for submission of link-
age analysis tasks via the Internet frees users from numerous
technical issues incurred in distributed environments; paral-
lelization, load balancing, fault tolerance, progress moni-
toring, and other technical issues are fully automated behind
the scene. The user is notified about the availability of results
by e-mail and can access them via the Internet. The user’s data,
as well as the results, are protected from unauthorized access.
These and other mechanisms were implemented to allow easy,
reliable, and secure use of this service, providing access to
thousands of computers located at several universities.

Preventing overload via staged complexity evaluation.—
Geneticists are not always aware of the computational load
induced by a linkage analysis task. Addition of a single marker
to the analysis of a large pedigree may increase the running

time from only few seconds to months (as demonstrated in the
“Results” section), making the results of little value from a
practical perspective and rendering the system inaccessible to
other users.

To prevent unintentional overload caused by high-complex-
ity tasks, the system rejects tasks exceeding the maximum com-
plexity threshold. To reach the conclusion about task feasibility
during early stages of execution, the task complexity is assessed
after every step of the Parallel-Find-Order algorithm, as ex-
plicated above. The complexity thresholds , , and in′ ′ ′C C C1 2 3

the algorithm are set in accordance with the amount of com-
putational power available in the grid environment being used.

Minimizing response time via multiple queues.—The ability
to efficiently handle concurrent computations of tasks of mark-
edly different complexities is crucial for providing adequate
performance when servicing multiple execution requests. To
allow efficient handling of small tasks while simultaneously
serving complex ones, the system classifies the tasks according
to their complexity, as determined by the Parallel-Find-Order
procedure. Each range of complexities forms its own queue
that is handled independently of others and uses a different
set of computational resources, providing the shortest response
time possible under a given system load. The higher the task
complexity, the more computational power is employed.
Whereas very short tasks are executed on a single dedicated
computer without any scheduling delay, the tasks of higher
complexity are parallelized and are invoked in a pool of a few
dozen computers with low remote-invocation overhead. Very
complex tasks are transferred to queues of their own, which
allows the potential use of several hundreds of computers but
causes higher delays in servicing the request. If, for some rea-
son, the task is executed in its queue for longer than is allowed
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Figure 3 Pedigree reprinted from Seboun et al.38

Table 1

Resource Allocation for the Analysis of
the Pedigree in Figure 3

No. of
Markers

LOD
Score

Running
Time

No. of
Computers

1 7.16 6 s 1
2 9.08 180 s 1
3 9.66 47 min 82
4 NA ∼100 h ∼20,000

NOTE—Five-point analysis could not be
completed, and the values are estimated. NA
p not available.

by the queue specification, it is migrated to a queue for longer
tasks, with all the available partial results preserved.

The feature of migrating partially completed tasks among
a set of queues, without losing the computations already fin-
ished, is a novel addition to the grid-computing paradigm that
was introduced because of the high computational demands
of SUPERLINK-ONLINE.

Increasing throughput via multiple pools of computers.—To
accommodate high loads, we implemented mechanisms to al-
low expansion of the system beyond the boundaries of a single
Condor pool of computers. Currently, SUPERLINK-ONLINE
spans five pools with a total of 2,700 computers, including
two pools at the Technion-Israel Institute of Technology in
Haifa, and three large pools at the University of Wisconsin in
Madison. Tasks are first submitted to the Technion pools and
then migrate between pool sites, according to the availability
of computers and other load-balancing criteria.

We implemented mechanisms to further extend the com-
putational power of SUPERLINK-ONLINE by augmenting it
with additional pools expected to be contributed by users and
institutions worldwide and to be used on a free-cycle basis
without affecting the contributing owners’ loads.

Results

We demonstrate the system capabilities of performing
exact LOD-score computations. We use the grid envi-
ronment of ∼2,700 computers of various performance
characteristics, though only computers having 1500 MB
of random access memory (RAM) and providing per-
formance 1300 million floating-point operations per s
(MFLOPs) were used for the execution, which reduced
the overall number to ∼2,000. The computer character-
istics are provided by Condor.22 The specified charac-
teristics correspond roughly to Intel Pentium IV, 1.7
GHz.

Experiment A: Testing Correctness

We ran SUPERLINK-ONLINE on all 146 data sets
used elsewhere.3,12 For all these data sets—which differ
in size, number of typed persons, and degree of con-
sanguinity—SUPERLINK-ONLINE computed correct
LOD scores, validating our implementation.

Experiment B: Published Disease Data Set

The pedigree in figure 2 was used for studying cold-
induced sweating syndrome in a Norwegian family.37

The pedigree consists of 93 individuals, 2 of whom are
affected, and only 4 were typed. The original analysis
was done using FASTLINK. The maximum LOD score
of 1.75 was reported using markers D19S895,
D19S566, and D19S603, with the analysis limited to
only three markers because of computational con-
straints. According to the authors, using more markers
for the analysis was particularly important in this study
since, “in the absence of ancestral genotypes, the prob-



Figure 4 Pedigree with 266 individuals (produced by OPediT)
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Table 2

Summary of Experiments on Large Pedigrees

NO. OF

PERSONSa

NO. OF

MARKERS

TYPED

(%)
LOD

SCORE

RUNNING TIMEb NO. OF COMPUTERS

SUPERLINK v1.5 SUPERLINK-ONLINE Averagec Maximum

33 5 50 5.5 5,000 s 1,050 s 10 10
68 3 17 .7 5,600 s 520 s 11 11
84 4 25 7.2 20 h 2 h 23 30
105* 3 20 9.7 450 min 47 min 82 83
115 2 26 10.7 ∼300 h 7.1 h 38 91
248 1 12 2.5 297 min 27 min 82 100
266** 1 13 3.7 ∼138 d 6.2 h 349 450
325† 1 38 3.0 ∼2,092 s 1,100 s 7 8
336† 1 39 3.0 ∼231 h 3 h 139 500
362† 1 45 5.9 ∼160 d 8 h 310 360

a Runs for the pedigrees in figures 3 and 4 are marked by an asterisk (*) and double asterisk (**), respectively.
Runs marked by a dagger ( ) are performed on the same genealogy, by increasing the number of individuals in the†
analysis.

b Running times of SUPERLINK-ONLINE include network delays and resource failures (handled automatically
by the system).

c Computed from the number of computers sampled every 5 min during the run.

ability that a shared segment is inherited IBD from a
common ancestor increases with the number of infor-
mative markers contained in the segment; that is, a
shared segment containing only three markers has a sig-
nificant probability of being simply identical by state,
whereas a segment containing a large number of shared
markers is much more likely to be IBD from a common
ancestor. Thus, the maximum four-point LOD score of
4.22 for the two families combined, on the basis of only
three markers from within an interval containing 13
shared markers, is an underestimate of the true LOD
score.”37 Study of another pedigree, as well as the ap-
plication of additional statistical methods, were em-
ployed to confirm the significance of the findings.

Using SUPERLINK-ONLINE, we computed six-
point LOD scores with the markers D19S895, M4A,
D19S566, D19S443, and D19S603, yielding LOD p

at marker D19S895, which would facilitate the3.10
linkage conclusion based on the study of this pedigree
alone.

Experiment C: Number of Computers for Multipoint
Analysis

This experiment explicates the exponential growth of
the required amount of computational resources when
the number of markers used for the analysis is increased.
We performed our computations on the pedigree pre-
sented in figure 3, which consisted of 105 individuals.
It comes from the study of brittle hair syndrome in a
large consanguineous Amish kindred38 and originally
was analyzed using two-point analysis.

We performed two-, three-, and four-point analyses,
using 10-allelic polymorphic markers D7S484, D7S2497,
and D7S510, with respective interval distances of 3.3

and 0.5 cM. Table 1 summarizes LOD scores obtained
at marker DS2497 and the corresponding amount of
computational resources required to perform the com-
putations within the specified time. We were unable to
perform five-point analysis because of the very high com-
plexity of the computations. Consequently, the respec-
tive entries in the table were calculated in accordance
with the problem-complexity estimation provided by
SUPERLINK-ONLINE when the task was processed.

Experiment D: Impact of Parallelized Ordering

We performed two-point analysis of several pedigrees
derived from a single large genealogy of thousands of
individuals, using PEDHUNTER.39 The pedigree was
shrunk by a user of SUPERLINK-ONLINE until its com-
plexity permitted the performance of exact computations.

This example demonstrates a sophisticated use of a
large genealogy by employing PEDHUNTER and SU-
PERLINK-ONLINE in sequel. Such use of a genealogy
reduces pedigree errors, which may be prevalent when
large pedigrees are elicited.40

The pedigree was initially reduced to contain 231 in-
dividuals, with 89% untyped and 10% affected. The
analysis was performed using a 13-allelic locus, yielding
a LOD score of 2.49. Increasing the pedigree size to 266
individuals, with 87% untyped and 8% affected, and
performing two-point analysis with the use of the same
marker yielded , which indicated that fineLOD p 3.65
mapping is worthy of pursuit. This pedigree is depicted
in figure 4.

Detailed analysis of the execution trace revealed that
parallelizing the task of finding the order of computation
played a significant role in the overall system perfor-
mance. Initial estimation of complexity for the pedigree
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with 266 individuals produced complexity that would
require ∼11 CPU years for the analysis to complete. SU-
PERLINK v1.5 reduced the complexity by 2 orders of
magnitude, which would still require ∼200 h to compute
on our system, given that 1,000 personal computers are
available. Finally, the application of the parallelized-or-
dering algorithm yielded an additional reduction in com-
plexity of 2 orders of magnitude, which allowed the
system to complete the computations in !7 h.

Experiment E: Evaluation of Performance

We measured the total run time for computing the
LOD score at one disease-locus position for large ped-
igrees. The results reflect the time a sole user would wait
for a task to complete, from submission via a Web in-
terface to receipt of an e-mail notification about task
completion. Results are summarized in table 2.

We also compared the running time with that of the
newest serial version of SUPERLINK, invoked on a 64-
bit Intel Pentium Xeon processor (3.0 GHz, 2 gigabytes
RAM). The entries of the running time exceeding 2 d
were obtained by measuring the portion of the problem
completed within 2 d, as made available by SUPER-
LINK, and by extrapolating the remaining running time,
with the assumption of similar progress. The time sav-
ings with the online system versus that with a single
computer ranged from a factor of 10 to 700.

In a large multiuser grid environment used by SU-
PERLINK-ONLINE, the number of computers em-
ployed in computations of a given task may fluctuate
during the execution from only a few to several hundred.
Table 2 presents the average and the maximum number
of computers used during execution. We note that the
performance can be improved significantly if the system
is deployed in a dedicated environment.

Discussion

SUPERLINK-ONLINE has been designed to dynami-
cally balance between performance optimization for a
single task and better service for all users. These con-
tradictory requirements lead to degradation of perfor-
mance of a single task when several tasks are being con-
currently served by the system. To allow for top per-
formance, we made available an initial downloadable
version that allows a user to duplicate the entire online
system onto the user’s own set of computers. Alterna-
tively, users can contribute pools of computers to en-
hance the online system for everyone’s benefit.

Our system prevents unauthorized access via the In-
ternet to the user-provided data and the results of the
analysis. A unique password is generated for each link-
age analysis task and is sent to the user’s e-mail address
provided during the submission. However, the input data

are processed by multiple remote computers that are not
under the system’s control and, thus, rely on the security
settings configured by their system administrators. De-
spite this potential data exposure, a user can easily ob-
scure the input by removing all identifying information,
such as names of persons and markers, before submis-
sion. This would still allow performance of the linkage
analysis, while making the data useless for any unau-
thorized observer.

In summary, with the advancement of free middleware
such as Condor,22 it is becoming feasible to perform ex-
act analysis of pedigree information with the use of many
computers, as is evident by SUPERLINK-ONLINE. Fur-
thermore, the methods presented will make it feasible to
compute exact LOD scores for polygenic diseases on
large pedigrees, which may advance genetic research on
such complex diseases, even though only monogenic dis-
eases have been analyzed in this article.
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Appendix A

Procedure13SG(N,T,E)

Input: A Bayesian network N with the set of variables
, a threshold T, and elimination choice criterion E.V
Output: An elimination order P, such that the elim-

ination cost of each variable is �T (elimination cost is
the size of the intermediate table created by eliminating
a variable).

1. While ,V ( ∅
a. pick three variables from , according{V ,V ,V } Ve e e1 2 3

to the elimination choice criterion E;
b. choose at random ;V � {V ,V ,V }e e e e1 2 3

c. compute the elimination cost ; andE(V)e
d. decide whether to perform conditioning or to

eliminate .Ve

If , thenE(V) 1 Te

i. pick , according to the conditioningV � Vc

choice criterion C;
ii. add to P as a conditioning variable;Vc

iii. remove from ; andV Vc

iv. update the Bayesian network N after con-
ditioning by reducing all tables containing

by the factor equal to the number ofVc
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values of .Vc

Else,
i. add to P as an elimination variable,Ve

ii. remove from , andV Ve

iii. update the Bayesian network N after
elimination by producing a single table
with variables from all tables containing

and removing these tables from theVe

Bayesian network.
2. Return P.

Constrained-Elimination Procedure (N,P)13

Input: A Bayesian network N, a combined condition-
ing, and elimination order P.

Output: Probability of evidence P.

1. While ,P ( ∅
a. pick next variable V from P.
b. .P R P ' V
c. If V is an elimination variable,

i. multiply all tables containing V and
ii. sum over V to obtain the result .Pt

iii. If is a number, no further summationPt

is needed, and .P R P # Pt

d. Otherwise, for each value v of V,
i. create by assigning in all tablesN V p vv

containing V.
ii. Constrained-Elimination ( ).P R P � N ,Pv

2. Return P.

Find-Order Procedure ( )13N,T,L

Input: A Bayesian network N, threshold T, number of
iterations L, and a set of l choice criteria usedC , … ,C1 l

to choose the next variable to eliminate. For example,
criterion is used to choose a variable that producesC1

the smallest intermediate table. Other criteria are de-
scribed elsewhere.13

Output: An elimination order P, such that the elim-
ination cost of each variable is (elimination cost is� T
the size of the intermediate table created by eliminating
a variable).

1. , , .j R 1 Cost R � Found R false
2. For to L,i R 1

a. run iterations with the use of choice criterionLmin

to compute a candidate elimination order.Cj

For to ,k R i i � Lmin

i. ,P R SG(N,T,C )temp j

ii. compute the sum of all tables created
when the order is used—namely,P temp

—andCost R Cost(P )temp temp

iii. update the best order.
If Costtemp ! Cost, then ;P R P temp

; .Cost R Cost Found R truetemp

b. Switch to the next choice criterion if no order is
found. This way of skipping between criteria en-
hances the Find-Order Procedure. If Found is
false, then .j p (j � 1)mod l

c. ; .Found R false i R i � Lmin

3. Return P.

Web Resources
URLs for data presented herein are as follows:

OPediT, http://www.circusoft.com/content/product/5 (for drawings of
the pedigree in experiment D)

SUPERLINK-ONLINE, http://bioinfo.cs.technion.ac.il/superlink-online
(for download, http://bioinfo.cs.technion.ac.il/superlink-online/
download)
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